Molecular Nanoprobes for Multiphotonics as New tools for Bioimaging

2nd Annual Symposium on Integrating Nanotechnology with Cell Biology and Neuroscience
The University of New Mexico, August 22nd 2008
UNM ICNCBN-IGERT
Multiphotonics: Two-photon absorption (TPA) ⇒ Two-photon excited-fluorescence (TPEF)

Fluorescence excited by:

- 1 photon
- 2 photons

Two-Photon Excited Fluorescence (TPEF or 2PEF)

⇒ Advantages in biological imaging:

- intrinsic 3-D resolution
- increased penetration in tissues
- reduced photodamage
- reduced background fluorescence
Two-photon excited fluorescence

\[\propto \sigma_2 \Phi I^2 \]

- pulsed lasers + focusing

\(\Phi \): fluorescence quantum yield

\(\sigma_2 \): two-photon absorption cross section

(in GM = 10^{-50} \text{ cm}^4 \cdot \text{s. photon}^{-1})

\(\sigma_2 \Phi \): TPEF cross-section (in GM)

\[\Rightarrow \text{molecular engineering of fluorophores with high } \sigma_2 \text{ in the biological spectral window (700-1200nm)} \]
Fluorescent Markers and Probes for 2PEF imaging

- **Endogenous biological chromophores:**

 NADH, riboflavins, retinol : \(10^{-5} < \sigma_2 \cdot \Phi < 1 \text{ GM}\)

- **Classical one-photon fluorophores:**

 DAPI : \(\sigma_2 \cdot \Phi < 1 \text{ GM}\)

 Coumarin 307, Bodipy : \(\sigma_2 \cdot \Phi < 20 \text{ GM}\)

 Fluorescein : \(\sigma_2 \cdot \Phi < 40 \text{ GM}\)
MOLECULAR ENGINEERING FOR MULTIPHOTONIC BIOIMAGING:

examples and applications

What is needed?

• high fluorescence quantum yield
• very large TPA cross-sections in the target spectral range
• without residual one-photon absorption

⇒ 3D imaging
⇒ enhanced sensitivity
⇒ reduced photodamage
⇒ selective photo-addressing
Molecular engineering of quadrupoles

- Increase length
- Adjust θ
- Type of spacer
- D/A strength

- TPA enhancement
- Spectral tuning
- (photo)stability

Rod-like and banana-shaped quadrupolar fluorophores

Measurement of two-photon absorption cross sections by TPEF

\[
\frac{\left(\sigma_2 \Phi \right)}{\left(\sigma_2 \Phi \right)_R} = \frac{\eta_{\text{spectral},R}}{\eta_{\text{spectral}}} \frac{n^2}{n_R^2} \frac{C_R}{C} \frac{n_R}{n} \left(\frac{F}{P^2} \right) \left(\frac{F}{P^2} \right)_R^{-1}
\]

Molecular optimization of quadrupolar fluorophores

<table>
<thead>
<tr>
<th>Fluorophore</th>
<th>(\lambda_{\text{abs}}^{\text{max}}) (nm)</th>
<th>(\Phi) ((\tau)) (ns)</th>
<th>(\sigma_{2}^{*}) (GM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex(_2)N</td>
<td>431</td>
<td>0.85</td>
<td>2115</td>
</tr>
<tr>
<td>Bu(_2)N</td>
<td>429</td>
<td>0.78</td>
<td>3470</td>
</tr>
<tr>
<td>Oct(_2)N</td>
<td>470</td>
<td>0.47</td>
<td>5480</td>
</tr>
</tbody>
</table>

*at 705 nm (toluene)

major TPA amplification in the NIR fluorescence is maintained

From model lipidic membranes.....

TPEF cross-sectional image of a GUV labeled with BAQ1. The giant unilamellar vesicles (GUV) were prepared from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC).

Angew. Chem., Int. Ed. 2001, 40, 2098
APPLICATION: 3-D BIOIMAGING

To non-damaging cell imaging

TPEF image of LLC-PK1 cells labeled with BAQ1, (excitation at 740 nm with less than 1mW excitation power)

FROM IMAGING TO SENSING
Towards Medium Responsive Two-Photon Nanoprobes

⇒ sensitive two-photon pH probes in the NIR

⇒ sensitive two-photon micropolarity probes

⇒ fast voltage probes
Recent examples of TP probes

Metal-ion sensor
(Mg$^{2+}$)

J. W. Perry and coworkers, JACS, 2004, 12, 9291-9306

Metal-ion sensor
(Ca$^{2+}$, Ba$^{2+}$, Mg$^{2+}$, Na$^{+}$, K$^{+}$)

B. R. Cho and coworkers, JOC, 2004, 5749-5751

H^+ sensors ⇒ 2-photon pH probes?
TP probes for metal-ions have been recently synthesized.
This fluorophore with crown ether is a sensor for Mg2+.
This another one is based on the same design and can sense different ions :.....
At last, this quadrupole is sensitive to the pH of solution.
SMART TWO-PHOTON FLUOROPHORES AS SENSITIVE pH PROBES IN THE NIR

Graphical Abstract

- **Low TPA**
 - Chemical structure: [Image]
 - Description:
 - Reaction: \(+ \text{H}^+ \rightarrow - \text{H}^+ \)
 - Low TPA

- **High TPA**
 - Chemical structure: [Image]
 - Description:
 - Reaction: \(+ \text{H}^+ \rightarrow - \text{H}^+ \)
 - High TPA

References

Two-photon pH sensing at membrane interface: two-photon microspectroscopy

2 photon excitation @780 nm

2PEF emission when the membrane is stained under neutral and basic conditions
Towards Medium Responsive Two-Photon Nanoprobes

Towards sensitive two-photon pH probes in the NIR

Towards sensitive two-photon micropolarity probes

Towards fast voltage sensitive probe
Incoherent processes

TPEF

Visualization localization

\(\sigma_2 \)

Coherent processes

Second Harmonic Generation : SHG

Local order Assymetry

Molecular engineering of NLO molecular probes

\(\sigma_{\text{SHG}} \)

Multiphotonics : Second harmonic generation (SHG)
SHG requires asymmetric source

Amphiphilic Push-pull Chromophores

⇒ objectives: from static imaging of cells to dynamic imaging of membrane processes
molecular engineering of chromophores for combined TPEF and SHG imaging of membrane dynamics

\[\Rightarrow \text{Amphiphilic Polyenic Push-pull Chromophores (APPC)} \]

\[n \uparrow \Rightarrow \sigma_{\text{SHG}} \uparrow \quad (\text{Chem. Comm., 2000, 353}) \]

\[\sigma_2 \uparrow \text{in the NIR (Optics Lett., 2000, 25, 3220)} \]
Wavelength (nm)

- 400
- 450
- 500
- 550
- 600
- 650

Power (a.u.)

- 0.0
- 0.5
- 1.0

SHG Power (a.u.)

- 0.0
- 0.5
- 1.0

SHG 2PEF

 fluorescense

Power (a.u.)

- 0.0
- 0.5
- 1.0

Wavelength (nm)

- 400
- 450
- 500
- 550
- 600
- 650
Simultaneous TPEF and SHG cross-sectional images of isolated Ncad1 cells labeled with an amphiphilic push-pull polyenic chromophore. Internalized dye molecules become randomly oriented in the cytoplasm and generate no SHG, whereas they continue to generate fluorescence.

APPLICATIONS: NON-LINEAR IMAGING OF “FLIP-FLOP” DYNAMICS

Biophys.J. 2001, 80, 1568.
Measurement of intermembrane distance at subwavelength resolution

SHG produced by two labeled GUV membranes. When they are separated by 0.6 times the excitation beam waist (w_0), SHG constructively interferes resulting in “hot spots”.
SHG for membrane voltage sensing?

(Lewis, Loew, 1993)
Voltage sensors?

Membrane ~ 50-100 Å
Potential 100 mV

Membrane potential 10^5 V/cm

SHG probes for imaging of neuronal activity

Imaging ~400 µm deep into intact neurons
⇒ No photodamage

Optically recording of action potentials
⇒ linear dependence of SHG on E
⇒ 0.833 ms temporal resolution
⇒ 0.6 µm spatial resolution

Collab. W. Webb

J. Neuroscience, 2004, 24, 999
Soft substitutes for semiconductor QD's?

quantum dots (QDs) ⇒ bright nanoobjects
⇒ tuneability, photostability
⇒ very large one ($\varepsilon \Phi$) and two-photon ($\sigma_2 \Phi$) brilliance*

Soft substitutes for semiconductor QD's?

quantum dots (QDs) ⇒ bright nanoobjects
⇒ tuneability, photostability
⇒ very large one (ε Φ) and two-photon
 (σ₂Φ) brilliance*

but toxicity, clearance, degradation ?…

Soft All-Organic Alternative to QD's?
• biocompatibility / degradability
• environmental friendly
An "organic" alternative? : modular route towards organic nanodots:

⇒ optimized fluorophore

⇒ phosphorous-based dendrimers

JP Majoral (Toulouse)
Nanodots: Modular approach

Controlled Grafting of Optimized Fluorophores on a branched (dendritic) platform

⇒ nano-object of controlled size, geometry, number of fluorophores.

Organic nanodots: a valid strategy towards bright nano-objects

<table>
<thead>
<tr>
<th>n_F</th>
<th>ε (M$^{-1}$ cm$^{-1}$)</th>
<th>Φ</th>
<th>huge extinction coefficients</th>
<th>fluorescence is maintained</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>85 000</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>12</td>
<td>1 000 000</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>24</td>
<td>2 000 000</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>48</td>
<td>3 800 000</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td>96</td>
<td>7 100 000</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>
Organic nanodots: a valid strategy towards bright nano-objects

⇒ "super" bright nano-objects: record brilliance: $\varepsilon \cdot \Phi$

- $\Phi_F > 50\%$ (QD 30-50\%)
- $\varepsilon \rightarrow 7\,000\,000\,M^{-1}\,cm^{-1}$

PCT Int. Appl. 2007, WO 2007080176
Fluorescent nanodots with giant TPA cross-sections.

⇒ "super" bright nano-objects:
record two-photon brilliance: \(\sigma_2 \Phi \)
\(\sigma_2 \rightarrow 60\,000\,\text{GM} \) (QD 700-10\,000 GM)*

* Lin, Chou *Small*, 2006, 2, 1308.
Nanodots Two-Photon Brilliance as compared to QD’s

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>508</td>
<td>2.44</td>
<td>0.192</td>
<td>75</td>
<td>390</td>
<td>150</td>
<td>780</td>
</tr>
<tr>
<td>2.6</td>
<td>524</td>
<td>2.36</td>
<td>0.251</td>
<td>165</td>
<td>660</td>
<td>300</td>
<td>1190</td>
</tr>
<tr>
<td>2.9</td>
<td>540</td>
<td>2.29</td>
<td>0.179</td>
<td>170</td>
<td>950</td>
<td>350</td>
<td>1950</td>
</tr>
<tr>
<td>3.2</td>
<td>556</td>
<td>2.22</td>
<td>0.603</td>
<td>605</td>
<td>1010</td>
<td>1800</td>
<td>2980</td>
</tr>
<tr>
<td>3.9</td>
<td>582</td>
<td>2.13</td>
<td>0.481</td>
<td>1560</td>
<td>3250</td>
<td>2400</td>
<td>4980</td>
</tr>
<tr>
<td>4.4</td>
<td>596</td>
<td>2.08</td>
<td>0.397</td>
<td>1950</td>
<td>4920</td>
<td>2870</td>
<td>7230</td>
</tr>
<tr>
<td>4.6</td>
<td>600</td>
<td>2.06</td>
<td>0.358</td>
<td>2020</td>
<td>5660</td>
<td>2980</td>
<td>8320</td>
</tr>
<tr>
<td>4.8</td>
<td>605</td>
<td>2.04</td>
<td>0.439</td>
<td>2710</td>
<td>6190</td>
<td>4530</td>
<td>10300</td>
</tr>
</tbody>
</table>

Lin, Chou *Small*, 2006, 2, 1308-1313
biocompatible biphotonic contrast agents for *in vivo* imaging

Two-photon imaging of the vascular network in the dorsal part of the rat olfactory bulb. Vessels were labeled after injecting intravenously a small bolus of 500 µM G2 nanodots in water. The image was taken at ~200 µm depth. No obvious toxic effects were observed during the experiment.

Collab. S. Charpak, L. Moreaux (INSERM, Paris Descartes)

\[\sigma_2 = 130 \text{ GM} \]

\[\lambda_{em} = 440 \text{ nm} \]
2-photon in vivo small animal imaging

Xenopus laevis (stage 53)
Gaëlle Recher, François Tiaho (Rennes)

\[\sigma_2 = 1000 \text{ GM} \]
\[\lambda_{em} = 530 \text{ nm} \]

Nandots: versatile nano-objects

- **Fluorescence Tuning:**
 quantum dots: size

- **Shape Modulation:**

 nanodots: fluorophore

- **Modular approach**
 ⇒ Water solubility:

- **Surface functionalization**
 ⇒ targeting

ACKNOWLEDGMENTS

Molecular and Supramolecular Photonics (Rennes)

Laurent Porrès
Marina Charlo
Céline Le Droumaguet
Cédric Rouxel
Anne-Claire Robin
Jean-Marie Vabre

Dr Olivier Mongin
Dr Claudine Katan
Dr. Martinus H. V. Werts

Plate-forme d’imagerie PIXEL (Rennes)

LCC (Toulouse)
Jean-Pierre Majoral
Anne-Marie Caminade
Thatavarathy Rama Krishna
Anna Pla-Quintana

Neurophysiologie et Nouvelles Microscopies (Paris)
Laurent Moreaux
Jerome Mertz
Serge Charpak

Cornell University
D. Dombeck
W.W. Webb

SCANING (Rennes)
François Tiaho, Gaëlle Recher